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The dynamics of spatial behavior: how can robust
smoothing techniques help?
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Abstract

A variety of setups and paradigms are used in the neurosciences for automatically tracking the location of an animal in an experiment and
for extracting features of interest out of it. Many of these features, however, are critically sensitive to the unavoidable noise and artifacts of
tracking. Here, we examine the relevant properties of several smoothing methods and suggest a combination of methods for retrieving locations
and velocities and recognizing arrests from time series of coordinates of an animal’s center of gravity. We accomplish these by using robust
nonparametric methods, such as Running Median (RM) and locally weighted regression methods. The smoothed data may, subsequently, be
segmented to obtain discrete behavioral units with proven ethological relevance. New parameters such as the length, duration, maximal speed,
and acceleration of these units provide a wealth of measures for, e.g., mouse behavioral phenotyping, studies on spatial orientation in vertebrates
and invertebrates, and studies on rodent hippocampal function. This methodology may have implications for many tests of spatial behavior.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In the neurosciences, data on locomotor behavior, spatial
orientation, navigation, spatial memory, and even social
behavior often consist of a time series of coordinates rep-
resenting the organism’s location. Common experimental
setups collecting such data include the Open Field Test,
the Photobeam Cage, the Morris Swim Task, the Elevated
Plus Maze, the Holeboard, and a variety of other spatial
mazes. Most of the studies performed in these setups focus
on the animal’s location, ignoring velocity and acceleration
(see, however,Kafkafi et al., 2001; Pierce-Shimomura et
al., 1999; Tchernichovski and Golani, 1995; Tchernichovski
et al., 1998; Wallace et al., 2002; Whishaw et al.,
2001).
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The benefits of moment-to-moment record of velocity and
acceleration cannot, however, be overestimated. Within a
dynamic framework, the acceleration and velocity of the an-
imal are the outcome of all the concurrent endogenous and
exogenous “forces” acting upon it. Conversely, the attrac-
tion or repulsion exerted by a wall, a cliff, a familiar place,
a partner or a chemical gradient is revealed by the momen-
tary values of these parameters. In rodent open field stud-
ies, for example, the forces exerted by the animal’s home
base (Eilam and Golani, 1989), or any other familiar place
(Tchernichovski et al., 1996), are reflected in the animal’s
velocity and acceleration. The momentary velocity of an an-
imal can tell us whether it “thinks” it is running away or to-
ward its home base, or how familiar the immediate environ-
ment is (Tchernichovski and Golani, 1995; Tchernichovski
et al., 1998), or what method of navigation it uses (Wallace
et al., 2002; Whishaw et al., 2001).

One ethologically-relevant point regarding velocities is
that involving zero or close-to-zero velocities, i.e., stops.
An organism’s locomotor behavior often consists of an al-
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ternation between progression and stopping, be it a nema-
tode (Pierce-Shimomura et al., 1999), an insect (Collins
et al., 1994, 1995; Miller, 1979), a fish (Nilsson et al.,
1993; O’Brien et al., 1989; Winberg et al., 1993), a lizard
(Pietruska, 1986), a bird (Pienkowski, 1983), or a mammal
(Golani et al., 1993; Kenagy, 1974). The movements it per-
forms during a stop, be it foraging movements, scanning or
movements related to any other form of information gather-
ing, are reflected indirectly in the spatiotemporal properties
of the stop, (e.g.,Drai et al., 2000). Mouse inbred strains, for
example, may differ substantially in the rate, type, rhythm,
and number of scans they perform during a stop. These dif-
ferences in the manner and intensity of information gath-
ering are indirectly reflected in the duration, spatial spread,
and average velocity of movement during stopping behav-
ior (Drai and Golani, 2001). Characterizing the stop-and-go
behavior should therefore be both ethologically meaningful
and results-wise fruitful.

As elaborated in this study, however, the data acquired
by the above listed mazes and setups suffer from noise and
artifact problems, which are inherent to all tracking sys-
tems and critically affect the results. Even a straightforward
measure such as the overall distance traveled by the animal
is highly sensitive to these problems, but they have a partic-
ularly devastating effect on the derivation of velocities and
accelerations. Smoothing the raw data is required to obtain
a smooth path, correct computation of velocities when the
animal is moving, and an isolation of arrests (zero velocity)
when stopping. As we show, however, the sometimes-erratic
nature of animal movement requires the correct application
of the appropriate smoothing methods. Furthermore, those
methods appropriate when the animal is on the go become
inappropriate when it stops. Therefore, a combination of
methods must be used. An automated high-throughput
analysis of moment-to-moment velocities becomes proper
only after the data have been carefully smoothed by such
combination of methods.

2. Methods of testing

As a test case for investigation of the noise sources and
of performances of smoothing methods we used the Open
Field test (Hall, 1934) with mice of several common in-
bred strains, tracked with Noldus EthoVision® video track-
ing system (Noldus et al., 2001; Spink et al., 2001) at a rate
of 25 records (frames) per second. The diameter of the arena
was 250 cm and the spatial resolution about 1.3 cm per video
pixel (for detailed description of methods and analysis see
Kafkafi et al., 2003a). In the tracking system, the arena was
specified as slightly larger than its actual boundaries, in or-
der to prevent any change in the spatial distribution of the
noise when the animal is at the very edge of the arena. The
image from the same video camera that was used for the
tracking was recorded, in parallel, on time-coded videotapes.
The output data files containing the records of locations at

time t, each involving the values at two perpendicular coor-
dinates (X(t), Y(t)), were exported from the tracking system
into SEE (Software for the Exploration of Exploration, see
Drai and Golani, 2001), which enables a large repertoire of
visualizations and calculations. Path plots and the location
and velocity series, processed with the optional smoothing
methods with different parameter values, were compared to
each other and to the video record of the same behavior, us-
ing controls that enabled the observer to run the videotape
frame-by-frame or in any required speed.

While our approach is implemented in the present study
on data borrowed from rodent locomotor and exploratory
behavior, using a video tracking system, our findings clearly
pertain to any study of an organism’s behavior making use
of spatial data, using many types of tracking.

3. Sources of noise in tracking spatial behavior

Most current tracking systems (either photobeam, photo-
cell or video systems) are constrained by the resolution of a
recording system using pixels or “tiles”. The recorded loca-
tion is therefore of discrete nature—two records cannot be
closer than the resolution level unless they are at exactly the
same location. Furthermore, since the typical pixel length
is smaller than the animal, the system actually records the
location of the animal’s “center of gravity”.

Whatever the noise level of the location measurement,
it will be even higher for estimating the velocity (the first
derivative of location) in the same time resolution. This is
clearly demonstrated inFig. 2 (compare noise levels be-
tween top and bottom graphs in raw data and within each
smoothing method). For example, when estimating veloc-
ity by differencing the locations measurements at successive
time points, the variance of the noise level of a difference of
independent measurements is thesum of the individual noise
level variances. Estimating the acceleration (the derivative
of velocity or the second derivative of location) will, for
the same reason, increase the noise level even further. In
general, as measures of behavior become increasingly com-
plex and depend on more coordinates, they accumulate more
noise terms, and it is very easy to reach a situation where the
signal-to-noise ratio is lower than 1, even when the original
noise appears to be small.

The proper smoothing method should be suitable to the
type of noise in the system. By comparing tracking results
with the videotape of the actual movement, we found that
the sources of tracking noise can be categorized into three
main groups: precision level noise, tracking system erratic
noise (mostly in the form of outliers) and body wobble. In
the following subsections we describe and illustrate these
three sources of noise.

3.1. Precision level noise

As noted above, tracking systems of most kinds actu-
ally see the arena as a paved area of “tiles” or (with video
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Fig. 1. A typical 6 s sample out of theX coordinates of an anesthetized
mouse as recorded by the tracking system at a rate of 25 frames/s.

tracking) pixels, typically smaller then the animal’s size, so
that a “center of gravity” of the animal’s image is given as
the location. If the boundaries of the tracked animal do not
fall exactly on one pixel, they might vacillate between two
neighboring pixels, so that the “center of gravity” (by what-
ever method it is calculated) will waver between discrete
values even if the animal is stationary. To demonstrate this
problem we placed an anesthetized mouse in the arena and
tracked it (Fig. 1).

For a pixel corresponding to 0.5–2 cm distance in the
arena, the motionless anesthetized mouse accumulates a con-
siderable total distance traveled. In 15 min (Fig. 4), the anes-
thetized mouse, according to the raw data, “traveled” 94 m
and had an average velocity of more then 10 cm/s! It is im-
portant to note that this discretization of the measurement
process affects not only a stationary mouse, but also a mov-
ing mouse. Even in the absence of any other sources of noise,
a smooth, slow progression of the mouse (as confirmed by a
human observer) will be erroneously recorded as a step-like
series of arrests. Precision level noise is likely to increase in
direct relation to the tracking rate, but we found that the high
tracking rate we used is necessary to capture many proper-
ties of rodent behavior, especially in the fast-moving mouse.

3.2. Tracking system erratic noise: system outliers

Outliers are observations ‘far’ from other neighboring (in
time) observations (e.g.,Fig. 3), most likely due to some er-
ratic behavior of the tracking system. Intuitively speaking,
the difference between noise and outliers is that outliers are
something one would have immediately corrected with no
scruples whatsoever, if one just happened to notice them.
When the data are automatically tracked and analyzed, how-
ever, this observer-based definition becomes impractical.

Outliers might have, of course, a devastating effect on
many measures of behavior such as the total distance trav-
eled, progression segment length, etc. The considerable

difference between the outlier and the adjacent points is
likely to yield erroneously high velocities (e.g.,Fig. 3,
top). Moreover, outliers have a devastating effect on many
smoothing methods that are required in order to deal with
the previous problem of precision level noise (Fig. 3).

3.3. Body wobble

This source of “noise” is due to the animal’s own move-
ments. By “body wobble” we refer to all movements of the
animal that are not part of its whole-body progression, e.g.,
head movements or incipient shifts of weight, which affect
the “center of gravity” measured by the tracking system.
Body wobble may, depending on the goal of the study, be
the very subject of investigation, but for the purpose of ob-
taining the animal’s path or its velocity it is an undesired
side effect and thus should be treated as noise. As in our
case, the researcher may want to filter out body wobble dur-
ing the animal’s progression but retain it during stops, where
it is indicative of rearing, scanning movements and other
ethologicaly-relevant behaviors (the word “stop” is used in
this study in the sense of “lingering”, seeDrai et al. (2000),
i.e., staying in place while possibly executing non-locomotor
movements, while the word “arrest” is reserved for com-
plete immobility or zero velocity). This again calls for a
combination of different smoothing methods for progres-
sion and stopping. Note that although, as in our situation,
the same smoothing procedures may be used in order to
remove both precision level noise and body wobble, these
two types of noise have different sources, and might be of
different magnitudes depending on the animal size, animal
speed, spatial resolution and other factors. In such situa-
tions, the parameters of the smoothing method need to be
adjusted differently to remove the two different sources of
noise.

4. Common smoothing techniques and their properties

Most current photobeam and photo-cell systems and some
video tracking systems do not employ any form of smooth-
ing, and are therefore exposed to the noise sources described
in Section 3. We are not aware of any serious attempt to eval-
uate the results of such systems against the actual behavior.
Some video systems try to cope with the problem by reduc-
ing the sampling rate (also known as down sampling), for
example, by using only every other recorded location. The
purpose of down-sampling is to separate body wobble from
true location. However, it is not a true smoothing method,
in its statistical meaning, as the level of the other sources
of variation that are described inSection 3is not being re-
duced. The down-sampling also affects the analysis of short
arrests.

Some video tracking systems do employ different meth-
ods of smoothing. Not all smoothing methods, however,
were created equal. The current section gives a general
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Fig. 2. Location (bottom graph) and velocity (top graph) out of 6 s of a mouse’s movement, smoothed with several methods. “Raw” velocity (gray, top
graph) is calculated as the differences between consecutive raw locations. MA velocity (top, red) is calculated as the differences between consecutive MA
smoothed locations. LP velocity (top, green) is calculated directly by the LP. LOWESS-smoothed locations and velocities were almost identical to those
calculated by LP since there were no outliers. Arrests (time range denoted by yellow stripes) were computed as zero velocity in the RRM smoothed
series. MA is applied with a window width of 15 frames. LP is applied with a window width of 15 frames and a degree of 2. RRM is applied with four
iterations using half windows of 3, 2, 1, and 1.

overview of some of the most commonly used smoothing
techniques and their properties in view of the research goals.

The most common smoothing technique is the Moving
Average (MA, seeBox and Jenkins, 1970; Velleman and
Hoaglin, 1981). In MA, the smoothed location at timet is
the average over a time “window” centered on this point and
2h+1 points wide, (h denotes the “half window width”). By
increasing window width a ‘stronger’ smoothing is achieved,
reducing the noise variability at the cost of reduced time
resolution. MA can be further improved by using a Moving
Weighted Average (MWA), which assigns larger weights to
data points in the center of the time window. For the same
window width, MWA follows the original data more closely
then MA. Numerical differentiation of the MA or MWA

smoothed series usually leads to much more realistic ve-
locities when compared to numerical differentiation of raw
locations (Fig. 2, top).

For the purpose of dynamic analysis of behavior, how-
ever, both MA and MWA have a disadvantage: they tend to
lower speed peaks while increasing the speed during slow-
ing down or arrest (Fig. 2, top). The latter especially has
grave consequences, as it shortens the duration of arrests and
even eliminates abrupt arrests entirely, erroneously joining
two movement segments into a single longer one (Table 1).
MA and MWA are thus unsuitable for the analysis of arrests
and progression segments.

Another commonly used smoothing technique is the Lo-
cal Polynomials method (LP, seeFan and Gijbels, 1996). As
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Table 1
Identification of 4 frames arrest embedded within 20 frames artificially produced series, as performed by Moving Average (MA) method (fourth and fifth
columns) and Running Median (RM) method (sixth and seventh columns)

Time (t)
(frames)

Raw X(t)
location (cm)

True
move/arrest

MA smoothed
location

MA move/arrest
conclusion

RM smoothed
location

RM move/arrest
conclusion

1 36 Move – – – –
2 31 Move – – – –
3 27 Move 28.2 – 27 –
4 24 Move 26.4 Move 27 Arrest
5 23 Move 23.8 Move 24 Move
6 27 Move 21.4 Move 23 Move
7 18 Move 19.2 Move 18 Move
8 15 Move 17 Move 15 Move
9 13 Move 13.6 Move 13 Move

10 12 Move 12 Move 12 Move
11 10 Arrest 11 Move 10 Arrest
12 10 Arrest 10.4 Move 10 Arrest
13 10 Arrest 10.2 Move 10 Arrest
14 10 Arrest 11 Move 10 Arrest
15 11 Move 12.2 Move 11 Move
16 14 Move 14 Move 14 Move
17 16 Move 16 Move 16 Move
18 19 Move 18 Move 19 Move
19 20 Move – – – –
20 21 Move – – – –

Both MA and RM were applied with a half-window ofh = 2, and an “arrest” was considered as no change in location from the previous record. The
“arrest” conclusion of the RM in frame no. 4 is a boundary effect and can therefore be disregarded.

in MA, LP uses a time window centered on each time point,
but instead of using the average location over the window,
it fits a low-order polynomial (usually a straight line or a
parabola) of location in time to the data at the window. Once
such a polynomial is fitted (using simple or weighted least
squares) the smoothed location at timet is the value of the
polynomial at that point. LP can also provide an estimation
of the velocity by using the derivative of the fitted polyno-
mial at timet. The strength of LP smoothing is controlled
mainly by choosing the window’s width (as in MA) but also
by the degree of the polynomial. With a proper choice of
these parameters, the LP method is more flexible than the
MA or MWA, in the sense that it can accommodate better
to the pattern of the data within a window (Fig. 2, bottom)
while still producing a smooth series. Another advantage of
LP over MA is as follows: if an animal moves along the
(circular) edge of the arena, its path will generally curve to-
wards the arena’s center. The linear MA will “pull” such a
path away from the edge towards the center. LP, in contrast,
will better capture the curvature of the path and reduce the
effect of this artifact. LP somewhat reduces the problem of
eliminating arrests or shortening them, although it does not
solve the problem completely (Fig. 2, top).

MA, MWA and LP all share, however, another crucial
disadvantage: they are not robust in handling system outliers.
They typically form a ‘dent’ in the direction of the outlier
(Fig. 3, bottom) and a wave-like form in the velocity time
series (Fig. 3, top). These artifacts stretch over a range of
data that is wider than the original outlier (as wide as the
window width, in fact). More dangerously, these artifacts (as

opposed to the original outliers in the raw data) are often
visually indistinguishable from the natural movement, so
that the researcher might fail to identify them as artifacts
when examining the smoothed series.

A seemingly very different set of smoothing tools is the
Smoothing Splines (SS, seeHärdle, 1991). The location ver-
sus time, as filtered by SS, balances between the following
two contradicting tasks: minimizing the sum of squares of
deviations between the data and the filtered function on the
one hand, and minimizing a penalty which is proportional to
the sum of squares of accelerations, on the other hand. Ob-
viously, the less smooth the filtered function is as a function
of time, the larger the squared acceleration is. However, SS
is very similar in its outcome to LP, where the constant of
proportion in the penalty in SS plays the role of the window
width in the LP. A disadvantage of the SS, however, is that
it does not handle outliers.

Finally, the Fast Fourier Transform (FFT) approach to
smoothing takes a different direction (Efromovich, 1999).
The raw data are represented as a weighted sum of periodic
functions. The terms involving higher frequencies are then
dropped, and the result is back transformed to the original
scale, producing a smoother series. The FFT is excellent for
smoothing periodic functions and remains very useful for
other smooth functions. It nevertheless fails to cope with in-
homogeneous functions of differing smoothness levels at dif-
ferent parts of the time series (Ramsey and Silverman, 1997)
as is the case with the path of the mouse, although some-
times this failure can be overcome (Tchernichovski et al.,
2001). It is also not robust enough to cope with outliers.
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Fig. 3. Location (bottom graph) and velocity (top graph) out of 4 s of a mouse’s movement, containing an outlier observation at about 3 s, smoothed with
several methods. MA velocity (top, red) is calculated by the difference of consecutive MA smoothed locations. LP velocity (top, green) and LOWESS
velocity (top, blue) are calculated directly by LP or LOWESS, respectively. Parameters are as inFig. 2.

5. LOWESS: a robust smoothing technique

In order to solve both the precision noise and outliers
problems we have incorporated the method of Locally
Weighted Scatter Plot Smoothing (LOWESS, seeCleveland,
1977) into our smoothing algorithm. This is an iterative
procedure combining the ideas of LP smoothing with ro-
bustness to outliers (seeAppendix A for the detailed algo-
rithm and choice of parameters). As in the weighted LP,
the first iteration of LOWESS fits a polynomial to the data
in a time-window centered att. The resulting polynomial,
however, is used only as a first estimation. Each original
data point is then assigned a weight according to its differ-
ence from its first estimation (residual). A larger residual
(indicating a poorer fit) results in a smaller weight for the
corresponding data point, implying it will be less relevant
for computing the next fitted polynomial. At the extreme,

a very large residual indicates that the point is an outlier,
and it is assigned a zero weight, implying it will have no
effect at all on the next iteration. In the second iteration of
LOWESS the raw data in the window is fitted again with
weighted LP, but this time using also the weights according
to the residuals. In the original algorithm these iterations
continue as above until no further change occurs, but prac-
tically we found that two iterations suffice. At this stage the
fitted polynomial is used to derive the LOWESS smoothed
location and velocity at timet. As with LP, LOWESS can
be also employed for estimating the velocity, by using the
derivative of the fitted polynomial at each time point. As
Fig. 3demonstrates, LOWESS is robust to outliers, but like
LP (Fig. 2, top) it still tends to eliminate very short arrests
and shorten longer arrests. Hence, LOWESS is inappropri-
ate for the task of identifying arrests. To this end it would
be preferable to complement it with an even more robust
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method that can cope with the abrupt changes in the loca-
tion as a function of time exhibited near the arrests. Such a
method is discussed in the following section.

6. Identifying arrests with Repeated Running Median

The simplest robust smoother is the Running Median
(RM, seeTukey, 1977). The RM procedure is similar to the
MA, but instead of replacing an observation with the average
of its neighboring observations, one uses their median. This
seemingly small change has enormous effect on the perfor-
mance, as the median is a robust function of the data. In sim-
ple words, in any window containing more than two obser-
vations a single outlier, however wild, will have no effect on
the median. Generally speaking, the disadvantage of the RM
is that if there is a sequence of values repeating for more than
h times (at least half the data points in the window), then the
median would be fixed at that value. Visually, the resulting
estimator is not that smooth and thus is not recommended for
evaluating velocities in general. This disadvantage, however,
becomes an advantage for the purpose of identifying arrests
(see the example inTable 1). RM is usually used in an it-
erated manner called the Repeated Running Median (RRM,
seeTukey, 1977): first smooth the measured data with a RM,
next smooth the resultant smoothed series with another RM,
possibly with a different window width, and so forth. Such
repetitions have an effect of giving more weight to locations
closer in time to the center of the window. A proper choice
of parameters (the window widths of the Repeated Running
Medians, seeAppendix A) was found to yield identification
of arrests that coincides very well with the identification by
several experienced observers that examined each arrest sev-
eral times in the videotape (and seeFig. 2). The choice of the
window sizes in the sequence was done by a trial-and-error
but also followed Tukey’s guidelines, who recommended re-
peating the RM steps starting from wider window width to
smaller or same size window widths (Tukey, 1977). Once
obtaining a final smoothed set of locations, a run of at leastl
locations that are not different by more than a small distance
ε are marked as arrests. We found thatl = 5 (equivalent to
0.2 s at a rate of 25 frames/s) and a very smallε (practically
0) yield an identification of arrests almost identical to that
done by an experienced human observer (seeSection 8and
Fig. 2). For more details seeAppendix A.

7. SEE Path Smoother: a combined smoothing
algorithm

The smoothing algorithm we constructed combines the
advantages of LOWESS for robust smoothing and velocity
estimation during progression with the advantages of RRM
for robust identification of arrests. The algorithm smooths
the raw data with both methods in parallel. For locations the
LOWESS-smoothed results are used during movement, but

during arrests (as identified by the RRM) the locations are set
to a linear interpolation between the (LOWESS-smoothed)
start coordinate and end coordinate of the arrest. For veloc-
ity estimation the LOWESS-computed velocities are used
during movement, but in data points that were identified as
arrests by the RRM the velocity is reduced to 0. The values
of the LOWESS and RRM parameters, and the arrests defin-
ing parametersl andε are all user-defined (seeAppendix A
for detailed definitions and parameter values). The algorithm
is implemented as an executable program called “SEE Path
Smoother” (SPSM) which is available from the authors. A
typical output of the velocity is seen inFig. 7.

When used in the framework of SEE, SPSM is employed
as the first stage of analysis, and is followed by separation
of non-arrest segments into two intrinsically distinct popu-
lations: progression segments and “local” movements (Drai
et al., 2000). Series of arrests separated by only local move-
ment are then joined into stops (“lingering episodes”, see
Fig. 7). SPSM is therefore essential for treating spatial be-
havior as a string of discrete, ethologically relevant behav-
ioral units, each having reliable dynamic properties.

8. Examples and experimental evaluation

In this section, we evaluate the previously described
smoothing methods side-by-side, using typical examples
and samples out of the behavior of mice from several inbred
strains.

Fig. 2 displays 6 s (150 frames) from the movement of
a DBA/2 mouse. For the sake of simplicity we consider
only the movement along theX dimension (the same anal-
ysis is also performed in theY dimension). It is not hard
to identify from the raw data (or from watching the video)
that during this period the mouse stopped five times. Note
the (most probably) precision level noise effect in the form
of small upward and downward bumps. Retrieving veloc-
ities from the raw data without any smoothing (i.e., by
numerical differentiation of successive raw data locations)
yields very erratic and unrealistic velocities (Fig. 2, top).
Attempting to identify arrests in the figure by searching
for zero velocity segments would miss the second arrest,
and the fourth arrest is shortened to a length that is hardly
discernible.

Clearly, using MA or LP reduces the noise substantially.
LOWESS smoothing is, in the absence of outliers, nearly
identical to the LP smoothing. The velocities smoothed by
both methods present a much more realistic picture than the
non-smoothed velocity, but still cause arrests to look shorter
than what they really are (Note especially the second and
fourth arrests.) Note that if we would have chosen to define
arrests by introducing a cutoff on the smoothed velocity, this
cutoff would have to be almost±10 cm/s in order to avoid
shortening the arrests, and this means that a large part of the
behavior, mainly slow progression and small movements in-
side “lingering” (Drai et al., 2000), would have been masked
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deviation) measured for an anesthetized mouse during a 30 min session,
using the raw data and smoothing with MA, LP, LOWESS and SPSM.
The standard deviation for the raw data velocity was 10.81 (error bar is
truncated in order to focus on the relevant range). Velocity was computed
using derivatives of the fitted polynomial for LOWESS and LP, and by
numerical differentiation for the raw data, and numerical differentiation
of smoothed locations for the MA. For the SPSM velocities are either 0
(in arrests identified by RRM) or the derivative of LOWESS (different
from 0).

out. Arrests defined by the RRM, on the other hand, fit much
better the location raw data.

Fig. 3displays another example out of a 4 s (100 frames)
movement sequence of a DBA/2 mouse. This example con-
tains a typical outlier coordinate. The non-robust methods
MA and LP (with same parameters as in the previous ex-
ample) yield smoothed locations that are being “pulled”
downward by the outlier. The smoothed velocities are also
distorted. The robust LOWESS again performs very similar
to the LP most of the time, but it is not affected by the
outlier in either the location or the velocity.

In order to estimate the effect of precision level noise
(Section 3.1) we placed an anesthetized mouse in the arena
and tracked it for 30 min, smoothing the results with several
methods (Fig. 4). Using the raw data (no smoothing), the
overall distance “traveled” by the anesthetized mouse was
almost 94 m. Smoothing generally reduced this noise by
about an order of magnitude. The SPSM method, however,
measured only 3.28 m, considerably less than the second
best smoothing method (MA, 8.38 m). This difference was
even more pronounced using the average velocity (0.01 cm/s
with SPSM in comparison to 0.59 cm/s with LP, second
best of the smoothing methods).

Theoretically, MA performs better than LP when the
location is either constant or linear in time (i.e., constant
velocity). This is reflected in the lower distance traveled of
the anesthetized mouse found by MA, compared to LP and
LOWESS. SPSM, which is specially designed for identify-
ing arrests, worked even better than MA for the anesthetized
mouse. A moving mouse, however, frequently acceler-
ates and decelerates. LP, LOWESS and SPSM are able to
adapt better to the variable velocity, while MA is likely
to over-smooth the path and producetoo short a distance.
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Fig. 5. The difference between the distance traveled using MA smoothing
and SPSM smoothing (triangles), and the difference between the distance
traveled using LOWESS smoothing and SPSM smoothing (squares) as a
function of the distance traveled using SPSM smoothing, in 40 mice from
different strains. The filled triangle represents the difference between the
MA distance and SPSM distance in the anesthetized mouse, as seen in
Fig. 4. The filled square represents the difference between the LOWESS
distance and SPSM distance in the anesthetized mouse, again as seen in
Fig. 4.

This is indeed suggested by comparing the distance trav-
eled by moving mice, as smoothed with MA, LOWESS and
SPSM, in 40 mice of 5 common inbred strains: BALB/cByJ,
C3H/HeJ, C57BL/6J, DBA/2J and FVB/NJ. The true dis-
tance traveled by a moving mouse is unknown, but one can
still measure differences between the methods.Fig. 5 dis-
plays the differences of distances between MA and SPSM
and between LOWESS and SPSM as a function of the dis-
tance measured by SPSM. For inactive mice MA produced a
longer distance traveled than SPSM, as reflected by positive
values inFig. 5, but this relation is reversed for active mice.
In fact, using regression, we find the following linear rela-
tionship between the two methods: MA= 7.6+0.96 SPSM
(r2 > 0.999), meaning that MA generally reduces the move-
ment distance by about 4% relative to SPSM. Even the most
active mice, however, are still part of this linear relationship
which intersects 0 distance at a difference close to that found
with the anesthetized mouse. This suggests that SPSM
properly takes account of arrests in active mice as well. We
further compared the SPSM to the LOWESS (Fig. 5), and
found that LOWESS= 14.7 + 0.98 SPSM (r2 > 0.999).
That is, LOWESS generally reduces movement distance by
only 2% relative to SPSM. Note inFig. 5 that the differ-
ence in distance traveled between the LOWESS and MA is
larger in moving mice than in the anesthetized mouse and,
furthermore, this difference increases with the increase in
activity.



I. Hen et al. / Journal of Neuroscience Methods 133 (2004) 161–172 169

To assess the extent of the outliers problem we analyzed
30 min sessions of mice from three strains of different col-
ors: FVB/N, C3H/He and DBA/2, and checked how many
outliers were recorded. For this purpose we defined an out-
lier as a time point at which the residual (i.e., distance of
raw data from the smoothed result) is larger than six times
the median of all the absolute values of the residuals in the
window (corresponding to 4 standard deviations in normally
distributed noise). The fraction of outliers out of the overall
data points was slightly more than 4% in all three strains.

We estimated the ability of the methods to recognize stops
by comparing the number of stops recorded in a 5 min ses-
sion of a FVB/N mouse. While MA, LP and LOWESS rec-
ognized only 40, 25 and 29 stops respectively, SPSM rec-
ognized 97 stops. An experienced observer (blind to these
results) went over the video record of the same sequence
three different times, in which she recognized 89, 96 and
102 stops.

9. Potential applications

As demonstrated in the previous sections, a combination
of the appropriate smoothing methods must be employed
for correct analysis of spatial behavior. This is true even for
simple measures such as the distance traveled, but is espe-
cially critical for dynamic analysis involving higher deriva-
tives of locations and the identification of stops. Automatic
high-throughput recording of undistorted velocities and ac-
celerations has wide implications for ethology and the vari-
ous branches of behavioral neuroscience.

One such application is in behavioral phenotyping. Rapid
advances in bioinformatics have created a demand for tests
of mouse behavior having high discriminatory power across
strains and preparations, high replicability across labora-
tories, and high-throughput for mass screening (Wahlsten
et al., 2001). In response to this demand, behavior geneti-
cists now employ a variety of measures including a richer
array of behavioral tests (Lederhendler and Schulkin, 2000),
standardization of these tests (Crabbe et al., 1999), and es-
tablishment of a Mouse Phenome Database (Paigen and
Eppig, 2000). A complementary measure, suggested by our
group, is automated recognition and measurement of a large
number of ethologically relevant patterns reflecting motor,
motivational and cognitive functions, all derived from open
field behavior, using SEE (Drai and Golani, 2001; Kafkafi
et al., 2003a,b). This automation process is based on an al-
gorithmic recognition of patterns, and must be preceded by
smoothing the data.

To appreciate the effect of the smoothing compare
the two graphs inFig. 6, which represent the path and
velocity-trajectory traced by a DBA/2 mouse in the course
of half a minute. The path and the velocity-trajectory on
the top graph are based on the measured location. From
this type of noisy data one can only get the distance trav-
eled, the proportions of that distance traveled along and

Fig. 6. A three-dimensional representation of the same movement sequence
of a DBA/2 mouse in a circular arena, using either the un-smoothed path
and velocity trajectory (top) or the SPSM smoothed and SEE segmented
data (bottom). The yellow-to-red lines represent location and direction of
progression. Azure lines designate velocity trajectories on the vertical axis,
generated by simple differencing from the raw data (top) or smoothed by
the SPSM (bottom).

away from the wall, and the amount of winding of the path
(all contaminated with noise). In contrast, the path and
velocity-trajectory at the bottom were obtained by SPSM.
This plot uncovers a sequence consisting of an alternation
between progression and lingering segments—discrete be-
havioral units with proven ethological relevance for rodents
(Drai et al., 2000). These units can be characterized by
simple measures such as their length, duration, maximal
speed, acceleration and other measures derived from these
(seeFig. 7). Treating the path as a string of discrete build-
ing blocks rather than a continuous series of coordinates
allows a more straightforward analysis of complex struc-
tures (Drai and Golani, 2001; Kafkafi et al., 2001, 2003a,b).
We presently have some 32 carefully designed endpoints
that characterize these building blocks. The endpoints are
computed by SEE Endpoint Calculator, a publicly available
software. This framework can also be applied to other spa-
tial mazes, such as the Morris water maze (Morris, 1984)
and the elevated plus maze, if they are conducted with video
tracking.

Since velocity betrays the forces acting on the ani-
mal, it can be used to uncover attractors, such as familiar
places in the environment, or repellors, such as the same
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Fig. 7. A time series of velocity smoothed by SPSM out of the movement
of a C57BL/6 mouse. This series includes two progression segments (S1
and S2) separated by a stop or a “lingering episode” (LE) in between. LE
includes three arrests and two segments of local movements. The ratio
between the maximal speed of a progression segment (e.g., vertical arrow
in S1) and the segment’s duration (e.g., horizontal arrow in S1) describes
a measure akin to segment acceleration (fromKafkafi et al., 2003b).

places later on, when the animal becomes disinterested in
them and avoids them (Tchernichovski and Golani, 1995;
Tchernichovski et al., 1998). In using this framework,
Wallace et al. (2002)and Whishaw et al. (2001)com-
pared the exploratory behavior of control rats and rats with
fimbria-fornix lesions. They have shown that the higher
velocity of the homeward portion of trips performed from
a rat’s home base (Eilam and Golani, 1989) requires an
intact hippocampal formation. In using the distinction be-
tween progression segments and lingering episodes they
have shown that while control and fimbria-fornix rats had
similar outward segments, the last progression segment on
the way home was significantly faster (and straighter) in the
controls, when compared with that of the lesioned rats. This
result was independent of testing in light or dark conditions,
suggesting that rats employ dead reckoning navigational
strategies to conclude the homeward portion of exploratory
movements. Using the methodology outlined in this study,
it is now possible to extend the analysis to whole-session
velocity trajectories as well as to other derived measures
(e.g., Kafkafi et al., 2003b). This is important because
the resolution and information content of these trajecto-
ries would finally match that used in electrophysiological
studies of the hippocampus (e.g.,Best et al., 2001), en-
abling a common framework for phenotyping, lesion and
electrophysiological studies. In addition, the record would
reflect not only the attractive properties of the home base
during the first exposure to a novel environment, but also
predictable changes (such as from attraction to repulsion)
embodying spatial memory and habituation during later
exposures (Tchernichovski et al., 1998).

Could the hippocampal place-cells and their correspond-
ing place-fields, (e.g.,Best et al., 2001; Mittelstaedt, 2000;
Wood et al., 2001) define operational places in the envi-
ronment rather than locations? There is now a substantial
amount of literature on how place cell firing corresponds

to different behavioral contexts such as direction of move-
ment relative to a start box and goal (Redish et al., 2000),
progressive changes in the shape of places (Ekstrom et al.,
2001), regions of particular behavioral significance even
when these regions are completely unmarked (Hollup et al.,
2001), and the relationship between multi-sensory process-
ing, head direction cells and place cell firing (Wiener et al.,
2002). Place cell firing thus appears to represent constructs
that are more complex than location. Given the new tools
for moment-to-moment computation of velocities, the iden-
tification of arrests and the separation of lingering move-
ments from progression it should now be possible to study
the correspondence between place and direction cell firing
and behaviorally defined places of freely moving rats.
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Appendix A

We outline the algorithms of LOWESS smoothing for
finding locations and velocities and the RRM, which is used
for recognizing arrests. Location is composed of two coor-
dinates (X(t), Y(t)), and the two algorithms are being applied
separately forX(t) andY(t). We then explain how to com-
bine the two sets of smoothed locations to obtain velocity
and identify arrests.

A.1. The LOWESS algorithm

The LOWESS algorithm requires several parameters:
d Polynomial degree. The same degree is used

in each window.
h “half window”, the number of records in the window

to the side of the center data point, so that the total
number of data points in the window is 2h + 1.

r The number of iterations for the robust smoothing.

For a given choice of these parameters and a given data
set,{Xt}nt=1:

Step A.

(i) For each 1≤ t ≤ n define a neighborhood of sizeh, as
follows:

Nh(t) = {s : |s − t| ≤ h}

http://www.tau.ac.il/~ilan99/see/help
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(ii) For each 1≤ t ≤ n, define weightswt(s) for all 1 ≤
s ≤ n:

wt(s) =




(
1 −

∣∣∣∣ t − s

h

∣∣∣∣
3
)3

, s ∈ Nh(t)

0, s /∈ Nh(t)

Step B. For each t, fit a dth degree polynomial using
weighted least squares with the weights defined in Step
A(ii). The fitted value at eacht is denoted byX̂t and is
the value of the polynomial at thatt (Note that a separate
regression is fitted for eacht.)

Step C.

(i) Define the residuals to beus = Xs − X̂s. Let m be the
median of |us| for s ∈ Nh(t).

(ii) Assign another set of weights,δs as follows:

δs =



(

1 −
∣∣∣ us

6m

∣∣∣2)2

, |us| ≤ 6m

0, |us| > 6m

for s ∈ Nh(t)

(i.e., Large residuals result in small weights and small
residuals result in large weights).

Step D. Iterate Steps B and Cr times but withδswt(s)

replacingwt(s).
The entire procedure including the initial computation and

the iterations is referred to as robust locally weighted re-
gression or LOWESS.

On the choice of smoothing parameters:
Number of iterations (r): the LOWESS can be repeated

until convergence, or by specifying a number of iterations.
We are using two iterations (r = 2), which for most cases
is sufficient. This saves computation time.

Half window width (h): the wider the window is, the
smoother the output will be. There are statistical proce-
dures for automatically choosing the width of the window
(e.g., cross-validation,Fan and Gijbels, 1996). In our data,
however, we are usingh = 10. This choice came from
trial-and-error where the output data looked relatively
smooth on the one hand, and on the other hand, it still kept
the important features of the data. This was done by trying
different window widths and comparing the output to the
actual video.

Polynomial degree (d): the higher the degree of the poly-
nomial is, the smoother the output is. Since each window is
very short in time (less than a second), it is reasonable to
assume that a mouse behavior is pretty smooth, reflecting a
low degree polynomial. We are using a second degree poly-
nomial, as this allows us to estimate the acceleration as well

as the velocity. Note that although the degree of the poly-
nomial affects the amount of smoothing, the window width
has a larger effect.

A.2. Estimating velocities

In Step B of LOWESS, estimation of the Local Polyno-
mial means estimating thed + 1 coefficients of the polyno-
mial. The derivative of the polynomial at each time, which
is the estimated coefficient of the linear term, gives an esti-
mate of the velocity. IfVx andVy are the estimates of the
velocities in directionsX andY, respectively, at timet, we

estimate the velocity at timet by
√

V 2
X + V 2

Y . This is done
for all t’s to get the velocities at all times.

A.3. Repeated Running Median (RRM)

The RRM algorithm in its role of identifying arrests re-
quires several parameters:
h1 ≥ h2 ≥ · · · ≥ hr “half windows” of the Running

Median iterations.
l minimal length of arrests.
ε ‘closeness’ parameter.

The RRM algorithm is based on repeated iterations
(applications) of Running Median smoothing, which re-
quires a single parameterh, the “half” window width of
the smoothing. The Running Median algorithm is as fol-
lows: given a data set{Xt}nt=1, the smoothed location at
time t, X̂t , is the median of the 2h + 1 Xs s closest in time
to Xt .

For a given set of “half windows” widths,h1 ≥ h2 ≥
· · · ≥ hr, the RRM smooths the data using the Running Me-
dian with “half” window widthh1, then it runs the Running
Median on the smoothed sequence usingh2, and so onr
times.

The RRM result is a sequence of smoothed locations.
When a rodent stops, the smoothed sequence at the rele-
vant time has the same value. We need to decide how many
successive repetitions of the same values would be consid-
ered as an arrest. This is done by the parameter,l. The last
parameter needed is the ‘Closeness’ parameterε (a small
number), determining how far from each other data points
can be, within the window of lengthl, in order to still count
them as the same point.

This procedure is done separately on{Xt}nt=1 and on
{Yt}nt=1. We identify an arrest when the mouse does not
progress on both directions at the same time.

The values of smoothing parameters we are using are:
Half window widths (hi): the sequence of windows widths

for the RRM follows Tukey’s recommendations (Tukey,
1977). The algorithm was verified against the video to make
sure we identify arrests correctly. We use four repetitions
h1 = 3, h2 = 2, h3 = h4 = 1.

Minimal length of arrests (l): 5 frames.
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Closeness parameter (ε): for mice 0 (practically 0.0001).
However, for larger animals (say a rat) a larger parameter is
needed.
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